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A direct method for constructing
periodic boundary-layer solutions

By Georgiy Korolev

Central Aerohydrodynamic Institute, Zhukovsky, Moscow Region, 140160 Russia
and Department of Mathematics, University of Manchester, Oxford Road,

Manchester M13 9PL, UK

An e¯ cient method is proposed for solving steady problems involving the interaction
between a boundary layer and an external stream with periodic boundary conditions,
including reverse-®ow regions. When non-uniqueness exists, the method can also be
used to  nd additional solutions. The algorithm is described, and examples of such
solutions are given.

Keywords: separation; method; interaction; boundary;
periodic solution; non-uniqueness

1. Introduction

The interaction between a boundary layer and an inviscid external stream is one of
the central problems in the theory of high-Reynolds-number separated ®ows. Even
though the interaction can occur in di¬erent situations, the problem may be posed
in a quite universal form. For two-dimensional ®ow, the problem is stated as follows
(Sychev et al. 1998). The ®ow in the viscous sublayer is described by Prandtl’s
equations,

u
@u

@x
+ v

@u

@Y
= ¡ dP

dx
+

@2u

@Y 2
;

@u

@x
+

@v

@Y
; (1.1)

supplemented with the boundary conditions,

u = v = 0; Y = 0; ¡ 1 < x < 1; (1.2)

u ! ½ Y as Y ! 1; ¡ 1 < x < 1; ½ = const: > 0: (1.3)

In the standard non-periodic case, the initial velocity pro le is typically given in the
following asymptotic form:

u ! ½ Y as x ! ¡ 1; 0 6 Y < 1: (1.4)

However, when the ®ow is periodic with respect to the streamwise coordinate x, this
condition is replaced by the condition that the cross-sectional velocity pro le at x is
identical with that at x + a, namely,

u(Y; x) = u(Y; x + a); 0 6 Y < 1: (1.5)

where the period a of the solution is a parameter of the problem. The initial pressure
distribution along the interaction region is not known and must be determined by
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3130 G. Korolev

an interaction condition, i.e. a relation between pressure, displacement induced by
the viscous sublayer and the geometry of the body placed in the stream. The form of
the relation depends on the speci c nature of the interaction and may involve some
additional parameters, such as the ®ow rate or pressure drop. In the general case,
the interaction condition can be written as

F (A(x); f(x); P (x)) = 0; u ! ½ Y + A(x) + f(x) as Y ! 1; 0 6 x 6 a:

Here, the following non-dimensional variables are used: x; Y is an orthogonal coor-
dinate system with Y = 0 being along the body surface, u and v are the projections
of the velocity vector onto the coordinate axes, P is the pressure disturbance, f
describes the geometry of the body, A0 is the slope of the displacement thickness,
and F is some operator. The exact general solution to these equations cannot be
obtained by analytical methods. For this reason, studies of separated ®ows of this
type have stimulated the numerical analysis of the boundary-layer equations, sup-
plemented with interaction conditions (see the review by Ruban (1990)). However,
almost all of these methods were developed for non-periodic ®ows, i.e. with condi-
tion (1.4). Examples of steady problems with spatially periodic interaction can be
found in Sychev & Sychev (1995), where linearized problems may be solved analyti-
cally. A nonlinear problem was solved in Smith & Timoshin (1996), where the ®ow
under consideration was induced by a rotating system of blades. The blade thickness
was assumed to be an O(Re¡1=2) quantity, where Re denotes the Reynolds num-
ber, assumed to be large. The numerical solution was calculated by marching over
a sequence of angular periods until agreement between the  nal and initial pro les
was achieved. One di¯ culty in solving problems of this type is that the initial pro-
 le is not prescribed but must be found by using the periodicity condition (1.5). In
this paper, a numerical method is proposed for solving the steady equations of the
interaction theory for ®ows that are periodic with respect to one coordinate. The
method, which extends the analysis presented in Korolev (1987), is characterized by
a high rate of convergence ( ve to six iteration steps are su¯ cient to reduce the error
of a solution to the nonlinear equations to a quantity of the order of 10¡6), which
does not depend on the mesh size and the spatial extent of the separation region.
The method is based on an e¯ cient inversion algorithm for the Jacobi matrix, which
makes it possible to implement the numerical method on personal computers on
100 £ 100 grids and to obtain a solution in the required range of parameters in just
several minutes. Moreover, the method can be used to  nd additional solutions when
non-uniqueness exists. Here, the method is applied to the problem of the interaction
between the boundary layer on the surface of a slightly elliptic cylinder rotating in an
incompressible ®uid and an inviscid external stream (Sychev & Sychev 1995), when
the eccentricity is assumed to be O(Re¡1=6).

In the orthogonal coordinate system tied to the elliptic surface, the boundary-layer
®ow is described by equations (1.1){(1.3), (1.5) with

½ = 2; a = 2 º :

The interaction condition has the form,

A(x) = ¡ C2
0

¡ 1

2 º
+ sin2(x) ; (1.6)
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Constructing periodic boundary-layer solutions 3131

where the parameters C0 and ¡ 1 are connected with the eccentricity of the ellipse
and the ®ow circulation, respectively. The value of C0 is prescribed and ¡ 1 must be
determined by solving the problem. This form of interaction is the result of matching
of the solution for the streamfunction in the boundary layer with the solution for the
streamfunction in the external inviscid ®ow following Sychev & Sychev (1995).

2. Construction of periodic boundary-layer solutions

We introduce new variables de ned by the relations,

Y = ½ ¡1=3y; u = ½ 2=3U; v = ½ 1=3V; P = ½ 4=3p; C0 = ½ 1=3c;

and rewrite equations (1.1){(1.3), (1.5){(1.6) in terms of the vorticity

! =
@U

@y
:

Using the continuity equation and the no-slip condition, we obtain the equation,

y

0

! dy1
@!

@x
+

y

0

y1
@!

@x
dy1 ¡ y

y

0

@!

@x
dy1

@!

@y
=

@2!

@y2
; (2.1)

which has to be supplemented with the boundary conditions:

! ! 1 as y ! 1; (2.2)

@!(y; x)

@y y = 0

= p0(x): (2.3)

The interaction condition (1.6), and the periodicity condition (1.5), for the velocity
pro le are written as

1

0

(! ¡ 1) dy + c2 ¡ 1

2º
+ sin2(x) = 0; (2.4)

!(y; x) = !(y; x + 2 º ): (2.5)

Following Wood (1957), we determine the unknown ¡ 1 by invoking the condition that
the streamlines are closed, which restricts the external ®ow con guration. Integrating
equation (1.1) from x = 0 to x = 2 º and using the fact that both velocity and
pressure pro les are periodic, we obtain

2º

0

@

@y
V U ¡ @U

@y
dx = 0:

Integrating this result from 0 to y and changing the order of integration, we use the
no-slip condition to obtain

2 º

0

[V (x; y)U(x; y) ¡ !(x; y) + !(x; 0)] dx = 0: (2.6)

From equation (1.1) in the limit of large y, the streamfunction behaves as

ª = y2=2 + A(x)y + B(x) + ;
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where A and B are periodic functions such that

p0(x) = A(x)A0(x) ¡ B0(x):

Therefore, condition (2.6) can be rewritten in the following  nal form,

2º

0

[ ¡ p0(x)A(x) ¡ 1 + !(x; 0)] dx = 0; (2.7)

and we seek a solution in the range [0; 2 º ]. We introduce a non-uniform grid (yk; xj),
k = 1; 2; : : : ; M , j = 1; 2; : : : ; N , such that the mesh size along the y-axis is smallest
at the surface. Introducing ¢yk = yk ¡ yk¡1, ¢xj = xj ¡ xj¡1, and !kj = !(yk ; xj)
and assuming that the upper boundary of the grid is su¯ ciently far from the surface,
we rewrite condition (2.2) as

LM j = !M j ¡ 1 = 0: (2.8)

On the lower boundary of the grid, we write condition (2.4) as follows:

L1j =
1

2

M ¡1

k = 2

(!kj ¡ 1)(yk + 1 ¡ yk¡1) + (!1j ¡ 1) dy1 + (!M j ¡ 1) dyM

+ c2 ¡ 1

2 º
+ sin2(xj) = 0: (2.9)

Equation (1.1) is approximated by two  nite-di¬erence schemes,  rstly a second-
order accurate Crank{Nicolson scheme in the forward-®ow region and a  rst-order
accurate scheme (with respect to ¢x) in the reverse-®ow region, namely,

Lkj = (ukj + uk;j¡ ¬ )
!kj ¡ !k;j¡ ¬

2(xj ¡ xj¡ ¬ )
+ vk;j¡ ¬ =2( ¶ 

y !kj + ¶ 
y !k;j¡ ¬ )=2

¡ ( ¶ yy!kj + ¶ yy!k;j¡ ¬ )=2 = 0; k = 2; 3; : : : ; M ¡ 1; j = 2; 3; : : : ; N;

ukj =
1

2
!1j dy1 + !kj dyk +

M ¡1

l = 2

!lj(yl + 1 ¡ yl¡1) ;

vk;j¡ ¬ =2 = [2(xj¡ ¬ ¡ xj)]¡1

£ (!1j ¡ !1;j¡ ¬ ) dy2 yk +

k¡1

l = 2

(!lj ¡ !l;j¡ ¬ )(yk ¡ yl)(yl + 1 ¡ yl¡1) ;

¶ 
y !kj =

¡ !k¡2 ;j ¹ 2 + !k¡  ;j ¡ !kj(1 ¡ ¹ 2)

(yk¡2 ¡ yk)( ¹ ¡ ¹ 2)
;

¶ yy!kj =
¸ !k¡2 ;j + ¯ !k¡  ;j + !k +  ;j ¡ !k;j(1 + ¯ + ¸ )

0:5( ¸ + ¯ ¹ 2 + ® 2)(yk¡2 ¡ yk)2
;

¬ = sgn ukj ;  =

sgn vk;j¡ ¬ =2; k 6= 2; M ¡ 1;

¡ 1; k = 2;

1; k = M ¡ 1;
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where

® =
yk +  ¡ yk

yk¡2 ¡ yk

; ¹ =
yk¡  ¡ yk

yk¡2 ¡ yk

; ¯ =
® ¡ ® 3

¹ 3 ¡ ¹
; ¸ =

® 3 ¡ ® ¹ 2

¹ 2 ¡ 1
:

Secondly, a second-order accurate three-point scheme (with respect to x) in the entire
®ow region was also implemented, namely,

Lkj = ukj( ¶ ¬
x !kj) + vk;j( ¶ 

y !kj) ¡ ¶ yy!kj = 0;

k = 2; 3; : : : ; M ¡ 1; j = 3; 4; : : : ; N; (2.10)

vk;j =
1

2
¡ yk¢y2 ¶ 1

x!1j +

k¡1

l = 2

¶ 1
x!lj(yl ¡ yk)(yl + 1 ¡ yl¡1) ;

¶ ¬
x !kj = (xj ¡ xj¡ ¬ )¡1 ¡ ¡ !k;j¡2 ¬

· (1 ¡ · )
+

!k;j¡ ¬ ·

1 ¡ ·
+

!kj(1 + · )

·
;

where

¬ = sgn ukj ;  = sgn vkj ; · =
xj ¡ xj¡2 ¬

xj ¡ xj¡ ¬
:

Here, the  rst-order derivatives with respect to x and y are approximated by  nite
di¬erences depending on the signs of the streamwise and normal velocity components,
respectively (Carter 1974; Ruban 1978). The periodicity conditions for the vorticity
pro le and condition (2.3) are written as

Qk = !(k; 1) ¡ !(k; N ) = 0; k = 1; 2; : : : ; M; (2.11)

p0
j = ¶ ¡1

y !1j : (2.12)

It should be noted, however, that the equations for the vorticity can be solved by a
condition obtained by integrating the boundary condition (2.3) from 0 to 2 º , which
is simpler than expression (2.7), namely,

p(x + 2 º ) ¡ p(x) =
x + 2º

x

!(y; z)

y y = 0

dz = 0: (2.13)

In  nite-di¬erence form, this is written as

QM + 1 =

N

j = 2

(¶ ¡1
y )(!1j + !1;j¡1)¢xj=2 = 0: (2.14)

When a set of values of ¡ 1 is used instead of (2.7) for a particular value of c, the
numerical solution (when obtainable) cannot be matched with the inviscid form along
the upper grid boundary and the resulting pressure distribution is not periodic. This
set of equations should be supplemented with an additional equation

QM + 2 = c ¡ c0 = 0;

where c0 is a prescribed value of the parameter. However, since ¡ 1 is characterized
by a singular behaviour near any values of c beyond which solutions do not exist
locally and prior to which two solutions may exist locally, the arclength s relating
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the value of ¡ 1 (which depends on the interaction region) to c should be used as a
parameter:

ds = d2 ¡ 1 + d2c: (2.15)

The parameter s becomes a prescribed quantity, and c and ¡ 1 are treated as unknown
variables. This modi cation is characteristic of the so-called continuation method
(Keller 1977). In  nite-di¬erence form, the modi ed equation is written as

QM + 2 =
(c ¡ ca)(ca ¡ cb) + ( ¡ 1 ¡ ¡ a

1 )( ¡ a
1 ¡ ¡ b

1 )

((ca ¡ cb)2 + ( ¡ a
1 ¡ ¡ b

1 )2)1=2
¡ ds = 0; (2.16)

where ca, ¡ a
1 , cb; ¡ b

1 are the values of c and ¡ 1 previously obtained at adjacent points
a and b on the curve representing the solution. One advantage of this approach is that
the solution can be continued beyond the singular points to other solution branches
(when they exist). This equation is used in the analysis that follows. The problem
for ! posed here can be solved without calculating pressure p explicitly. Then, the
pressure distribution can be found as an integral of the pressure gradient given by
(2.12).

The set of nonlinear algebraic equations derived above is solved by applying the
Newton{Kantorovich method and Gaussian elimination to invert the Jacobi matrix
at each iteration step. We introduce vectors Wj and P , with dimensions equal to M
and N1 = M + 2, respectively, as follows:

Wj = [!1j ; !2j ; : : : ; !Mj ]T; P = [!11; !21; : : : ; !M 1; ¡ 1; c]T:

Henceforth, we assume that the boundary layer is unseparated in the interval (x1; x2).
Otherwise, we can perform a preliminary analysis of the interaction condition and
determine the region where the ®ow accelerates, or carry out a series of preliminary
computations using the periodicity condition, to set the grid origin, j = 1, in such a
®ow region. Then, the set of equations can be written in compact form as

L2(W1; W2; P ) = 0; (2.17)

Lj(Wj¡2; Wj¡1; Wj ; Wj + 1; Wj + 2; P ) = 0;

Lj = [L1j ; L2j ; : : : ; Lkj ; : : : ; LM j ]T; j = 3; 4; : : : ; N;

Q(W1; W2; : : : ; WN ; P ) = [Q1; : : : ; QN1
]T = 0; (2.18)

where Lk;j = 0 is the corresponding  nite-di¬erence equation at the kth point on
the jth vertical grid line. Suppose W i

j and P i are obtained as approximations of
the corresponding vectors at the ith iteration step. To improve the approximation
of these vectors, we introduce the corresponding corrections, ¢Wj and ¢P , and
rewrite equations (2.17) as

@Lj

@Wj + 2
¢Wj + 2 +

@Lj

@Wj + 1
¢Wj + 1 +

@Lj

@Wj
¢Wj +

@Lj

@Wj¡1
¢Wj¡1

+
@Lj

@Wj¡2

¢Wj¡2 +
@Lj

@P
¢P + Lj(W i

j¡2; W i
j¡1; W i

j ; W i
j + 1; W i

j + 2; P i) = 0;

j = 3; 4; : : : ; N; (2.19)
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@L2

@W1
¢W1 +

@L2

@W2
¢W2 +

@L2

@P
¢P + L2(W i

2 ; W i
1 ; P i) = 0; (2.20)

where the matrices multiplied by the correction vectors are calculated as

@Lj

@Wr

=
@Lkj

@Wms

;

@Lj

@P
=

@Lkj

@Pl

;

k = 1; 2; : : : ; M; l = 1; : : : ; N1 m = 1; 2; : : : ; M;

r = j ¡ 2; : : : ; j + 2 s = 1; 2; : : : ; M:

Here, Pl is the lth component of the vector P . We seek a solution to the problem
(2.19), (2.20) in the form,

¢Wj = Rj¢Wj + 1 + Tj¢Wj + 2 + Zj¢P + Sj ; (2.21)

where Rj and Tj are M £M square matrices, Zj is an M £N matrix, and Sj is an M -
component vector. Using (2.21), we solve equations (2.19) and (2.20) for 3 6 j 6 N to
 nd (as in the conventional Gaussian elimination for  ve-point equations) recursive
relations to be used in calculating the matrices Rj , Tj , Zj , and Sj :

Rj = C BTj¡2 +
@Lj

@Wj + 1

;

Tj = C
@Lj

@Wj + 2

;

Zj = C BZj¡1 +
@Lj

@Wj¡2

Zj¡2 +
@Lj

@P
;

Sj = C BSj¡1 +
@Lj

@Wj¡2
Sj¡2 + Lj ;

where

C = ¡ BRj¡1 +
@Lj

@Wj¡2

Tj¡2 +
@Lj

@Wj

¡1

; B =
@Lj

@Wj¡2

Rj¡2 +
@Lj

@Wj¡1

:

Invoking the de nition of the vector P and equation (2.20), we  nd the initial values:

R1 = T1 = S1 = 0; Z1 =
Zkk = 1; k = 1; : : : ; M;

Zk;l = 0; l = 1; : : : ; N1; l 6= k;
R2 = T2 = 0;

Z2 = ¡ @L2

@W2

¡1
@L2

@P
; S2 = ¡ @L2

@W2

¡1

L2 +
@L2

@W1

;

which are required to start calculations based on the recursive relations. We assume
that the region of unseparated ®ow also includes the interval (xN¡1; xN ) at the right
boundary of the grid. Then, RN¡1 = RN = TN¡1 = TN = 0 and therefore we have
the following:

¢WN¡1 = ZN¡1¢P + SN¡1; ¢WN = ZN ¢P + SN :

Using these equations, we write equation (2.21) in a simpler form, namely,

¢Wj = Z 0
j¢P + S0

j ; j = 3; 4; : : : ; N; (2.22)
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2.50

1.00

1.50

2.00

0.00

t

0.50

- 0.50

3.00

X

1.892
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2.001.000.00

Figure 1. The skin friction distribution on the body surface for various values of c.

1.20

0.60p

0 3.00
x

1.892

c = 0.7

1.4

2.001.00

Figure 2. The pressure distribution on the body surface for various values of c.

where Z 0
j and S 0

j are determined by the recursive relations,

Z0
j = Zj + RjZ 0

j + 1 + TjZ0
j + 2; S 0

j = Sj + RjS0
j + 1 + TjS0

j + 2;

with the initial values

Z 0
N = ZN ; S 0

N = SN ; Z 0
N¡1 = ZN¡1; S 0

N¡1 = SN¡1:

To determine the unknown vector ¢P , we use conditions (2.11), (2.13) and (2.16),
writing them in the form,

Q(W1; W2; : : : ; WN ; P ) = [Q1; : : : ; QN1
]T = 0:
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0
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G 1
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- 40

- 20

1.61.0 1.2 1.4 1.80.80.60.4

Figure 3. Dependence of the value ¡ 1 on the value of c.

This set of equations yields

N

j = 1

@Q

@W j
¢Wj +

@Q

@P
¢P + Q(W i

1 ; W i
2 ; : : : ; W i

N ; P i) = 0; (2.23)

where the matrices QW and QP are calculated as

@Q

@Wj
=

@Qr

@Wkj
;

@Q

@P
=

@Qr

@Pl
;

r = 1; 2; : : : ; N1; k = 1; 2; : : : ; M; l = 1; 2; : : : ; N1:

Substituting ¢Wj given by equation (2.22) into equation (2.23), we obtain an equa-
tion for ¢P , namely,

N

j = 1

@Q

@Wj
Z0

j +
@Q

@P
¢P +

N

j = 1

@Q

@Wj
S0

j + Q = 0:

Solving this equation for ¢P , we  nd all values of ¢Wj from equation (2.22) and
the next approximation for ¢Wj and ¢P is sought in the form,

¢W i + 1
j = W i

j + ¢Wj ; P i + 1 = P i + ¢P :

It should be noted that the calculations of Rj and Tj , as well as the recalculation of
Zj and Sj , are necessary only for the reverse-®ow region.

3. Results

The proposed method was used to compute the ®ow on an N £ M = 201 £ 201
grid with non-uniform mesh size along the y-axis and a uniform mesh size along
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Figure 4. Friction distribution on the body surface for c = 1:82 but di® erent values of ¡ 1 .

7.5

5.0

2.5

0 3.0

2

1

2.01.0
x

p

Figure 5. Pressure distribution on the body surface for c = 1:82 but di® erent values of ¡ 1 .

the x-axis. The mesh size was the smallest (¢y = 0:1) near the surface irregularity.
Originally, the computations were performed within ¡ º 6 x 6 º , 0 6 y 6 25,
but since the elliptical cross-section is symmetrical, the analysis was subsequently
restricted to 0 6 x 6 º . However, identical numerical results were obtained on both
grids. The set of equations (2.1){(2.7) was  rst solved for c = 0, and then solutions
were obtained for gradually increasing values of c. For c < 1:6, the parameter c
was held constant during each iterative cycle. The value of c was then increased,
and the computations were repeated. When the value of c was large, solutions were
characterized by a singular behaviour. The small increase of c reduced to the huge
change of ¡ 1. For this reason, the arclength s, as de ned by equation (2.15), was
used as a parameter in the problem instead of c. In accordance with the continuation
method, the value of s was held constant, and c and ¡ 1 were treated as unknown
quantities. Solutions obtained for values of s less than 0.1 were used as starting
approximations for the ®ow  eld. The three-point scheme in (2.10) was found to
be the most e¯ cient. Even though its computational cost was higher than that of
the Crank{Nicolson scheme, in terms of the number of arithmetic operations per
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 = 0Y

1
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Figure 6. Streamline pattern for c = 1:82.

iteration, it proved to be less sensitive to the starting approximation for the ®ow
 eld and was characterized by a higher convergence rate of the iterative process.
Five to six iteration steps were required for a solution to converge with a residual of
the order of 10¡6, namely,

max j¢!kj ji < 10¡6;

whereas the Crank{Nicolson scheme required one or two additional iteration steps to
achieve a similar accuracy. Grid-size convergence was checked by reducing the mesh
by half. The largest discrepancy in the values of the friction (within 4%) was observed
in the vicinity of the pressure peak. The results computed with these schemes were
very close (the maximum di¬erence in the skin friction distribution is of the order
of 10¡3). A numerical analysis also showed that the di¬erence between solutions
obtained under conditions (2.7) and (2.13) was insigni cant (the maximum di¬er-
ence in pressure distribution and in the skin friction distribution is on the order
of 10¡3). When one of the conditions was met, the other was also satis ed. Here,
the results obtained with the use of the three-point scheme (with respect to x) are
described. Figures 1 and 2 show the friction and, respectively, the pressure distri-
butions on the surface of an elliptic cylinder for c = 0:7, 1.4, and 1:892. According
to  gure 1, a reverse-®ow region forms at c = 1:4 and monotonically expands as
the parameter c increases. One would expect a solution to exist for all values of
c. However, this is not the case with the periodic boundary-layer analysed in this
study. Figure 3 shows the circulation ¡ 1 as a function of c and it shows that when
c exceeds c ¤ = 1:95 § 0:05, the problem has no solution. Another characteristic
feature of the solution is the existence of a second lower branch, which is charac-
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terized by decrease in ¡ 1 and an increase in the extent of the reverse-®ow region
associated with a decrease in c. It should be noted that a non-unique solution was
also obtained in the theory of interaction between boundary layers and external
streams in earlier studies of laminar incompressible ®ow past the leading edge of
a slender airfoil in Brown & Stewartson (1983) and Ruban (1982), jet ®ows past
a curved surface in Zametaev (1986) and the trailing edge of a slender airfoil in
Korolev (1989), incompressible ®ow past the vertex of an obtuse angle in work of
Korolev (1991), and supersonic viscous ®ow past an axially symmetric surface in
Gittler & Kluwick (1987). Figures 4 and 5 compare the skin friction and the pressure
distributions on the surface of the elliptic cylinder obtained for c = 1:82 and two
di¬erent values of ¡ 1 and the curves 1 and 2 represent the upper and, respectively,
lower branches of the solution. The ®ow pattern computed for the lower branch at
c = 1:82 is shown in  gure 6. Here streamlines are shown in the regime 0 6 Á 6 20
with the constant interval ¢Á = 1. The broken curve represents the isoline of zero
streamfunction in the ®ow pattern computed for the upper branch of the solution.
However, the reverse-®ow region expands and the boundary-layer displacement thick-
ness increases when the computations were continued further along the lower branch.
This resulted in a loss of accuracy, which made it impossible to perform a numer-
ical analysis of the lower branch for values of ¡ 1 lower than those represented in
 gure 3.

In summary, the present analysis shows that the solution exists for a limited range
of c. This may indicate that the initial assumptions about the time-independent
and/or unseparated regime of the external ®ow are not valid when c > c ¤ , and a
time-dependent solution should instead be sought.

Support from EPSRC is gratefully acknowledged.
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